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1. INTRODUCTION
THE BIFURCATION theorem of Krasnosel’skii [18] concerns the equation

e=Ae+ H(A,e), (1.1

where e is an element of a real Banach space E, 4 is a real scalar, A : E— E is compact and
linear, and H:R X E— E is compact, continuous, and higher order in u. It states that if
A€ R0} is a characteristic value of A (i.e. 1/A is an eigenvalue for A) of odd algebraic
multiplicity, then (4, 0) is a branch (or bifurcation) point for the solution set to (1.1). This
result and its global extension, due to Rabinowitz [20], have had a significant impact in
mathematical research in recent years, fostering advances, not only in the use of topological
methods in nonlinear analysis, but also in differential equations and its applications.

One direction in which research has prospered is in the study of multiparameter nonlinear
eigenvalue problems (i.e. problems in which the parameter is taken from a vector space of
dimension >1). Among the numerous examples of such are the work of Alexander and
Antman [1], [2]; Alexander and Fitzpatrick [3], [4]; Antman and Keeney [5]; Browne and
Sleeman [6], [7]; Cantrell [8]-[10]; Hale [15] and Turyn [23].

For the purpose of indicating the thrust of this article, we very briefly note the results of
several of the above mentioned works. In [9] and [10], the author studies the equation

k

e= 21 MAse+ H(A e), (1.2)

where A = (4, . .., A), with conditions on the operators analogous to those in (1.1) in order
to analyze the solution set to the nonlinear Klein oscillation problem (see also [6], [7], [13],
and [16]). The methods are primarily degree theoretic in a manner analogous to [18].

In [1] and [2], Alexander and Antman use cohomological techniques to assert the multi-
dimensionality of bifurcating solution continua for appropriate analogues to (1.1), including
problems in which the parameter space is of infinite dimension. These methods have been
applied to the study of the buckling of nonlinearly elastic rods under torsion, thrust and gravity
[4].

The existence of parameter values for which the topological indices associated with (1.1)
differ is the crucial aspect in the proof of Krasnosel’skii’s Bifurcation Theorem. The same is
true for the examples mentioned above. In [10], for example, the form of the linearization
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of (1.2) is such that rays in R* emanating from the origin provide paths along which one may
anticipate a change of topological index. However, such paths may not always be guaranteed
to exist for the operator equation

e=A(A)e+ H(Ae), 1.3)

where A € A, an arbitrary (real) Banach space. The principal objective of this paper is then
to observe a readily verifiable condition on the map A— A(A), which guarantees the existence
of paths along which odd algebraic multiplicity implies a change of index. Once this observation,
homogeneity condition (2.2), is made, Krasnosel’skii and Rabinowitz type bifurcation theorems
are immediate, and are collected in Section 2. ‘

If dim A > 1, there are some noteworthy consequences of (2.2) upon the structure of the
set of bifurcation points in A. In particular, in Section 3 we note that a bifurcation point of
odd multiplicity is never isolated in the set of bifurcation points. We also introduce a notion
of “codimension 1 manifolds” and use this concept and a perturbation theory result to
completely describe the set of bifurcation points near a point of multiplicity one, under the
assumption that the map A— A(A) is continuous.

Finally, in Section 4, we demonstrate that a class of nonlinear Sturm-Liouville boundary
value problems with coefficient functions viewed as parameters satisfies (2.2), and use this
information to analyze bifurcation phenomena. The analysis here, combined with that for a
similar example in [2], gives a rather complete description of the solution set to such problems.

2. SITUATION AND MAIN RESULTS

Suppose E and A are real Banach spaces and that D C A is a nonempty open set with the

propuiy ihat 2 C D for ¢ 0 Lot FrD v E— E he a man curch that Fl-..r is comnletely

continuous for compact subsets I' of D. More specifically assume F(A e) =
A(A)e + H(A, e), where A(-) : D~ K(E) (the Banach space of compact linear operators on
E) is continuous and H(A, e)/|le]| = 0 as |le| — 0 uniformly for 4 contained in compact subsets
of D. Consider the solution set in D X E of the equation

e=F(},e). @2.1)

Note that (4, 0) is a solution to (2.1) for all values A in D. Such solutions are called trivial,
and by a nontrivial solution to (2.1), we mean a solution (4, e) with e # 0. B will then denote
the set {A € D: every neighborhood of (4, 0) in D X E contains a nontrivial solution to (2.1)}.
B x {0} is said to be the set of bifurcation points for (2.1).

Let =, = {A € D: the null space N(I — A(A)) is nontrivial in E}. Then it is a basic result
that B and =, are closed in D, and B C £,. Furthermore, if A€ 2,4, we let geomult 4
= dim N(I — A(X)) and mult 2 = dim L>J1 N{I- A}

For the remainder of this paper we also assume:

A(th) = tFA(A), 2.2)
for all t> 0, A € D and for some fixed k € Z\{0}. We then have:

TuHEOREM 2.1. If A € 24 and mult A is odd, then A € B.

Remarks 2.2. (i) If dim A =1, k=11n (2.2), and A—> A(4) is an odd map, theorem 2.1 is
the classical Krasnosel’skii Bifurcation Theorem. Thus theorem 2.1 may be viewed -as a
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multiparameter analogue to the Krasnosel’skii result. The proof of theorem 2.1 will proceed

as in [18] once an appropriate change of topological index lemma is established. For the sake
of completeness, we give an explicit statement of this lemma.

LEMMA 2.3. Suppose (2.2) holds and A ¢ 3,. Then the Leray-Schauder topological degree
degrs(I — A(4), B(0, R), 0) is well-defined and equals

m

B;

(~Di=1

w/here B = mult(£¥* 2), with {t;: i = 1,2,..., m} the finite number of points in (0, 1) such that
t} Ly €3,. )

k
(if) If A = R*and A(A) = 2 A, where A= (A, .. ., A) and 4; € K(E), then (2.2) holds

with & = 1. Hence the results in [9] and [10] are also special cases of the results of this paper.

(iii) If (2.2) holds for some k, 0 & D if k<0 and 0 EZ,if k>0.

(iv) In [1] and [2], Alexander and Antman use cohomological results to establish global
higher dimensional branches of solutions to multiparameter nonlinear eigenvalue problems
which emanate from bifurcation points. They essentially assume the existence of A;, A, in D
and an arc in D joining A, and A, such that degs(1 — A(X4),B(0,R),) # deg.s
(I-A(%), B(0,R),0). (2.2) provides a method of verifying this condition and hence identifies
a class of problems to which the techniques of [1] and [2] are applicable.

Definition 2.4. A continuous map 4:R—Dis a proper crossing of changing degree at A if the
following conditions hold:

(i) ~(0) = A and A(¢)— aD as t— *oo; 4 ‘
(ii) if y> 0, there is a neighborhood V of A in D such that YV NRR)C (-, v);
(iii) there is a number g, > 0 such that
(a) the Leray-Schauder degree deg;s(1 — A(h(1)), B(0,1),0) is defined for all ¢ such
that |¢] < g, and ¢ # 0; and;
(b) degrs(1 ~ A(h(v)), B(0, 1), 0) = sgn(1B) - degus({ — A(h(B)), B(0, 1), 0),
where 7, BE (—&, &), T# 0, B+0.

Suppose now that A€ X,. By (2.2) there is a 6> 0 such that [1-6,1+8M)NZy=
{A}. Since =, is closed, for each o€l — 6,1 U (1,1 + & there is an g(oA) > 0 such
that B(oA, e(oA)) C D\Z,. Thus there is a “cone” ¥ at A which contained in D\Z, We
now have the following theorem.

'THEOREM 2.5. Suppose 4 : R—> D is a proper crossing of changing degree at A. Then there is
a continuum (closed connected set) ¢ of nontrivial solutions to (2.1) meeting (A, 0) such that
either

(i) € approaches 8(D X E)
or

(i) € N (B x {0N\{(4,0)}) # @.
Furthermore, if 77: D X E— D is the projection map, then 7(€) C A(R).
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Proof. Note that by lemma 2.3 and the above exposition, proper crossings of changing
degree exist if mult A is odd. Define a map Gu:RXE—E by Gu(t,e)=
A(h())e + H(h(t), €). By the properties of &, the result follows from an application of the
Rabinowitz Bifurcation Theorem [20] to the equation e = G,(t, e).

Remark 2.6. A version of this result, where a change of index is assumed is mentioned in [1].
However, a condition such as (2.2) is needed in order to have the result follow from the
assumption of odd algebraic multiplicity at A.

3. AN EXAMINATION OF B

Let D be a component of D. Since A is a Banach space, D is locally path connected. Thus
D is path connected, open, and tD C D for ¢ > 0. It then follows from the homotopy invariance
of the Leray-Schauder topological degree that if A€ 24 N D and mult A is odd, D\Z4 is not
connected. Hence, in this situation, 3, must have topological dimension dimA —1 if
dim A < « and dimension « if dim A = oo.

The preceding remarks indicate that, if dim A > 1, the set B is substantially more than a
discrete collection of points (the situation if dim A = 1). In this section, we make an inves-
tigation into the a priori structure of B. We first make a definition which shall prove useful.

Definition 3.1. Let E be a real Banach space. A subset V of E is called a codimension 1
manifold if for every x € V there is a positive number r(x) such that B(x,r(x))NV is
homeomorphic to a proper basic neighborhood in £ ={x € E : |lx| = 1}.

We now have the following basic result.

THEOREM 3.2. If 34 at Ais a codimension 1 manifold, say T, and mult Aisodd,then T C B.

THEOREM 3.3. Let B’ = {4 € £,: mult u is odd}. Let A € B’ and suppose there is 1> 0 such
that B(A, ) N B’ is closed. Then there is a codimension 1 manifold M C B(A, n) N B' con-
taining A.

Proof. By remark 2.2(iii), we may pick d>0 such that d< IAll, B(A,d)C D, and
R{A} N =4 N B(A, d) = {A}. Then pick 8 € (0, 1) such that (1 ~ 8)4, (1 + )AE B(A, d). Let
A-=(1—8)A and A, =(1+ 8)A. Then there is £>0 such that B(Aq, ) CTB(A, d) N
(D\Z,) for 0= —, +. Note that if lw— A:+]| < e, then

l%—%%;— U= A u < &
Hence
degrs(I — A(A-), B(0,1),0) = degLS[I —A <8 . g; u>, B(0,1), o]
and

degLS(I - A(A‘-I'): B(O, 1)7 1) = degLS(I —A(M), B(O5 1)3 O)
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Since mult 4 is odd, there is

te (1 0 1)
1+6
such that mult (#u) is odd.
Now let d, 6, and ¢ be as above with the additional restrictions that

n

6$W and £<26.

Let
£
c= B(A, 5) Niwe Al = Al

Then C is a codimension 1 manifold. Let u € C. Then (1od)u € B(Ay, €), 0= —, +. Thus
there is 1€ (1 — 8,1 + &) such that mult(zx) is odd. Now define a function
fiC—>(1-6,1+6) by  f(w)= min {t: mult(sy) is odd}.
1E(1~8,1+6)
We now show f is continuous.

Suppose {, }i=1 C C and u,— u. Let {ttn; }7=1 be an arbitrary subsequence of {y, }7-1. Then
{flu) ¥z C (I-6,1+6)C[1~ 6,1+ 8] There is a subsequence {u,,,.l_}f‘;l of {un}iz1 such
that f(u,,,.l_)—> t€[1-6,1+ 8] as j— =. Since f(,u,,,.i)u,,,.i-» tu and hence tue,, re
(1 - 6,1+ 8). Note that

”f(.uni,)uni,- — A= ”f(.un,,).un., -(1= 6)“11.; +(1= 6)“!!;,_ (1£6)A+ (1x8)A— A
= [f(,un.',-) -(1=x 6)‘ “.unij” + (1% 6)”#:!.-, - /1“ + 6”}‘“
< 8(JAl) + (1 + 8)(e/2) + SlAl < 28(All + 1) < .

Thus mult(fu) is odd. Thus minimality of f(u) implies = f(u). Suppose now 7> f(w). By
construction, B’ N(1 — 6, FC )t} = @. Now f(t,) —1> f(u) implies there is Jo € Z*
such that j = J; implies J(A,) =f(A) + o, where 0> 0 and such that f(u) + o<t Thus we
contradict the fact mult f(u)u is odd. Hence ¢ = f(u). Since the subsequence we choose was
arbitrary and the limit is unique, f is continuous on C.

We now define a function f: C—B' N B(4, 1) by f(u) = f(u) 4. Then F(C) is the desired
codimension 1 manifold.

COROLLARY 3.4. If A€ 34 and mult A is odd, then A is not an isolated point in B provided
dimA>1.

CoROLLARY 3.5. If A€ B’, then 3, N B’ at A does not consist solely of a closed, totally
disconnected set provided dim A > 1.

We now give a perturbation theory result which is an aid in establishing a significant
consequence of theorem 3.3. Our proof will follow that of [21, theorem I1.2.1], making liberal
use of ideas from [14]. First, however, we recall some facts from functional analysis needed
for the proof.
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Let A be a compact linear operator on a real Banach space E and A € R an eigenvalue of
A with mult A= geomultA=h. Then E = N(A — Al)® R(A — Al), where N(A ~ Al =
(®y,...,P,) with |@]=1, i=1,2,...,h By the Hahn-Banach Theorem, there is
a collection {1, . . ., Y.} C E* such that (®;, ¥j) = &, for i,j=1,2,... ,hand (x,¢)=0
for x€R(A—Al), j=1,2,...,h, where (f,g) =g(f) for fE E and g € E*. Then there
is a continuous linear mapping T:E— E such that T®;=0 for i=1.2,....A, and
Tlra-an = A, the pseudoinverse of A — Al It then follows that for any f € E.

h
T(A = ADf=f = 2 (f, ¥) s

THEOREM 3.6. Let Ag € £, with mult Ay = geomult Ay. Then there is a nbd V of A such that
for any A€V,
> geomult(fA) < mult Ag.

AEZANV

Proof. The hypothesis is equivalent to the statement that 1 is an eigenvalue of A(Ay) with
mult 1 = geomult 1. Note Ao # 0, and let X denote the set {u € E : | = ||A]}. For n€ X,
A(u) = A(h + (u— A)). Let e = pu— Ao and define B(e) = A(do + &) = A(y). Then 1 is an
eigenvalue for B(0), and if A is an eigenvalue for B(¢) with e € X=X- X and 1> 0, then
A Vk()g + €) € Z4 by (2.2). Thus, with no loss of generality, we proceed as follows.

Suppose that the map eé—> A(g) is a continuous map from X to K(E), where X is a
codimension 1 manifold passing through the origin of a Banach space A. Suppose also that
A(0)=A has real eigenvalue A with muit A= geomuUIt A = 1. Let I, {¥1,..., W), aud
{41,..., Y} be as in the preceding exposition.

Assume now that A(g) has perturbed eigenvalue A(g) and corresponding eigenvector
¢(g). Let B(e) = A(e) — A and u(e) = A(e) — A. Then (4 = 1) ¢(¢) = (u(e) — B(&)) ¢(&).
Thus

(¢(e), (u(e) — B())*y;) =0 ' (G.1)
forj=1,2,...,h. Since

h
$(e) = T(A ~ i) (&) + 2 (9(e), v) @,
@(€) is of the form

h
T(u(e) -~ B()) d(e) + 2 ci®:
Let

h
w= 2:1 c®; and  S= T(u(e) — B(g)).

The equation ¢(g) = w + S¢(¢) has solution

Zo S”w
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provided ||S]| < 1. Thus

)

h .
(906), (1(6) = B0) ) = 3 B0 (u(9) - B(&) ')

Thus (3.1) is equivalent to

h o

2, e (u(e) = B(&) 3,571, ,) =0 (32)
J=1,2,...,h. System (3.2) has a nontrivial solution {c1, ..., cp} if and only if

det((u(é‘) ~ B(¢)) VZOS"@, w,-) = 0. (3.3)

(3.3) Provides a condition which any eigenvalue for A (&) must satisfy. Thus we define

109 = (3, (1= BTG BN, ;)

Now B(¢) is continuous in & with B (0) = 0 and T is bounded. Thus

(B (= B B0, )

is a power series in u for || small uniformly for e sufficiently near 0 in X. Furthermore,
fii(u, €) can be extended to complex valued u with maintenance of uniformity in e. The same
is true for F(u, ) = det(f;(u, £)).

Now f;(, 0) = <§0 u[ Tu)*®;, 7/’/')

=< MV+1T"(DI'5 WJ>

= (u@i, 1/’;)
= ,LL(S,']'.

M s

il

0

Thus F(u,0) = u*. Now F(u, €) is defined for u € C such that |l <R, and € X with
lel < R, for Ry >0 and R; > 0 sufficiently small. Then, as in the proof of lemma I, B3 in
[14], we employ Rouché’s theorem to show thatif 0 < R < Ry, thereis 0 < R’ < R; such that
for e€ X N B(0, R'), there are exactly » numbers, counting multiplicities, m(e), ..., u(e)
with [14(€)| <R and F(w(¢),€) =0, i =1, 2,...,h

Hence, if we let u(e) = () for some k€{1,2,. .. ,h}, where (&) € R, there exist
c1(€),. .., c(e) € R with
h

2 ci(e) (D,-” =]

i=1
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and
h

3, (e) (3, (u(0) ~ BE)IT((9) = B)]Ps W)=0, =12k

i=1

Now define

o0

h
#(9) = 3, 1T(u(e) ~ BT (Ze @)

y=0
Then
h
9(e) = 2 ci(e) @i+ T(u(e) ~ B(£) $(2)
((u(e) - B(D) d(e), ¥) =0, j=1,2....h
Hence

h

(A~ )9(e) = (4= 1) | Ze(e) @i+ T(u(e) = B(&) #(2) | = (u(e) — B(£) 9(2).

Thus A (&) (&) = (A + u(g)) ¢(&). Furthermore

h @ , R \
o(e) = 2, (@i + 2 [T(u(&) — B Zede) i)
implies that ||¢]| may be chosen sufficiently small to guarantee

h

o(e) — 2 ci( &) Ps

i=1

<43

Hence ¢(g)# 0. Thus ¢(g) is an eigenfunction for A(é) corresponding to eigenvalue

A+ u(e).
We now have the following important consequence of theorem 3.5 and theorem 3.3.

THEOREM 3.7. Suppose A € Z4 with mult A= 1. Then =4 at A is a codimension 1 manifold
each point y of which has mult y = 1.

Remark 3.8. Theorem 3.7 may be established via the implicit function theorem provided the
map A— A(A) is differentiable. (2.2) and theorems 3.3 and 3.6 allow the removal of the
differentiability assumption.

4. AN APPLICATION TO NONLINEAR STURM-LIOUVILLE BOUNDARY VALUE
PROBLEMS

In this section we consider the boundary value problem

~(p(D)x' (D)’ + a(Dx(7) = r(Dx(7) +f(2(1),x'(7), (4.1)
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where 7€ [q, b] and x is to satisfy
ax(a) + &/x'(a) =0 (4.2.1)
Bx(b) + B'x'(b) =0. (4.2.11)

We assume that p is positive and continuously differentiable on [a, b]; g is continuous on
[a, b]; r is positive and continuous on [a, b]; f: [a, b] x R*— R is continuous and satisfies
f(z, u, v) = o(|u| + |v]) uniformly for v & [a, b]; and (|| + |/ |)(|8] + |B'| > 0.

We investigate the solution set to (4.1)-(4.2) viewed as a bifurcation problem with the
coefficient functions p and g varying as parameters (see [2]). We begin by showing that
(4.1)~(4.2) may be considered in the context of Section 2.

Let L(p, q) be defined by L(p, g)x = —(px')’ + gx, where the independent variable 7 has
been suppressed. If ¢ >0, it is clear that L(tp, tgq) = tL(p, q). Furthermore, since solutions
to initial value problems for

L(p, q)x(1) =0, 43

7€ (a, b), are unique, solutions to initial value problems for (4.3) depend continuously (in
fact, analytically) on p and g. The same is then true for the Green’s functions which are
associated with (4.3)-(4.2).

Let V={u€ C'[a,b]:u>0 on [a, b]} X C[a, b]. Then V is open C'[a, b] X C[a, b] and
tVCVifor t>0. Now let D={(p,q) € V:L(p,q)x =0 and x satisfies (4.2) imply x = 0}.
The preceeding observations imply that D is open. Furthermore it is easy to see that
tD C D.

Let (p, g) € D. Then the operator G(p, q), given by

G(p. 9)x() = [ 40, )L s1r()x(s) s, (4.4)

where g(p, q) : [a, b] X [a, b] — Ris the Green’s function for (4.3)-(4.2) at (p, q), is a compact
linear operator on the real Banach space E, given as the continuously differentiable functions
on [a,b] which satisfy (4.2). Observe that if x € E and >0, L(tp, tg) G(tp, tq)x(1) =
r(t)x(7). Hence L(p, q)[:G(p, tq)x(t) — G(p, g)x(7)] =0 and therefore G(tp,1q) = !
G(p,q) for t>0.

Using g(p, q) for (p, q) € D, (4.1)-(4.2) is equivalent to

x=G(p,q)x + F(p, q,x), (4.5)
for x € E, where F(p, g, x) is given by
b
Fp.4.9)() = [ 80, )5 s11(s, x(5)) as. (4.6)

Since the map (p, 9) — g(p, q) is continuous (in fact, analytic) and f(, u, v) = o(lul + |v])
uniformly for 7€ [a, b], the results of Section 2 are applicable to (4.5). In particular, (2.2)
holds with & = —1.

Suppose now (p, g) € D. It follows from linear Sturm-Liouville theory [11] that there
are sequences {x,};=1 CE, x,# 0, and {},}*-; CR, A = A(p, q), such that A,— +o as
n— +w and L(p, q)x, = A,rx,. Furthermore, A, is a simple eigenvalue for the linear boundary
value problem. The following result is therefore a consequence of theorem 2.1.
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THEOREM 4.1. Consider the nonlinear boundary value problem (4.1)~(4.2) (or, equivalently,
operator equation (4.5)). For each (p,q) € D, there is a sequence {A,(p,q)}=1 of real
numbers with A,(p, g) — + such that

1

0 Duke FC B ND,
{An(p,q)(p(p k(’”’)}

where k(p, g) = min{n : A,(p, g) > 0}. Furthermore, the map (p, q)— k(p, q) is continuous
and so constant on components of D. '

Theorem 3.7 insures that B is a codimension 1 manifold at each such point
A1 (p, q)(p, q)- However, we may make this result more explicit, proceeding as follows.

Let Do={(p,q) € D: (P, Dlcias1xcas) = 1}and for i=1, let D; = {(p,q) €D : it x € E,
x# 0 and L(p, q)x = rx, then x has i — 1 simple zeros in (a, b)}. Consider a component Dy
of Dy and let k(Dg) be the value of the map (p, g) — k(p,g) on Dy. B is then characterized
as follows.

THEOREM 4.2. Let i = k(Dy). Then the map v, given by

1
A'i(p’ Q)

Wi(p: 61) = (P, C.I)

is analytic map from Dy into D;.

Proof. The result may be obtained via theorem I1.5.16 and ideas in SectionIV.3.5 0of [17]. See
‘also [2].

We now turn our attention to the nontrivial solutions which emanate from B. Our result
is:

THEOREM 4.3. Let (po, qo) € wi(ljo), where Dy is a component of Dy. Let h: R— D be a
proper crossing of changing degree at (po, qo) such that A(R) N ¥i(Do) = {(po, g0)}. Then
there is a continuum % of nontrivial solutions to (4.5) such that ‘¢ meets d[(R*Dy) x E] and
such that if ((p, q), x) €6, then x has i — 1 simple zeros in (a, b).

Proof. Apply theorem 2.5 along with the Schmitt-Smith lemma [22, theorem 2.5].

Remarks 4.4. (i). By placing additional assumptions on f (see, for example, [12] and [19]), we
may obtain the existence of nontrivial solutions with i — 1 simple zeros in (a, b) for each
(p, q) € (0,1)y;(Do). Further assumptions on f may be made to guarantee that
(2, g, %)|lpxe— + as [|(p, g)llp—> 0. (ii). The main results of [2] show that the continua of
theorem 4.3 are subsets of solution continua which are infinite dimensional at every point. -
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